Các kĩ thuật "functional" tất định Hiển vi siêu phân giải

Kĩ thuật RESOLFT cho phép thu ảnh hiển vi với độ phân giải cao được sử dụng trong các kính hiển vi STED[26][27]GSD. Ngoài ra còn các phương pháp khác như sử dụng tính chất cổng quang học AND của tâm N-V (nitrogen-vacancy center).[28]

Phương pháp dập tắt cưỡng bức (Stimulated emission depletion - STED)

A figure showing the resolution improvement between traditional confocal microscopy and STED microscopy.

Hiển vi STED sử dụng hai laser xung, một laser kích thích phân tử phát quang, laser còn lại dập trạng thái kích thích của phân tử phát quang bằng cách bắt nó phát xạ cưỡng bức.[8][29][30][31][32][33] Trong thực tế, xung kích thích đến mẫu trước, xung STED đến sau. Laser liên tục cũng có thể được sử dụng. Thêm vào đó, xung STED được tạo hình vành khăn (ở giữa có cường độ yếu nhất) và trùng khít với vết của laser kích. Do sự phụ thuộc phi tuyến của tốc độ bức xạ cưỡng bức vào cường độ của chùm STED, tất cả các phân tử phát quang ở xung quanh tâm vết kích thích bị dập về trạng thái cơ bản - trạng thái tắt. Do đó, kích thước biểu kiến của vết kích thích giảm đi nhiều (nhỏ hơn nhiều lần giới hạn nhiễu xạ). Ảnh hiển vi thu được bằng cách quét đồng thời hai chùm laser trên mẫu. Độ rộng nửa chiều cao của vết kích thích nhỏ đi khi tăng cường độ của xung STED và tuân theo phương trình (1).

Δ r ≈ Δ 1 + I max / I s {\displaystyle \Delta r\approx {\frac {\Delta }{\sqrt {1+I_{\max }/I_{s}}}}}    (1)

∆r là phân giải ngang, ∆ là độ rộng nửa chiều cao của PSF, Imax cường độ đỉnh của laser STED, I s {\displaystyle I_{s}} ngưỡng dập tắt bão hòa.

Hạn chế lớn nhất của hiển vi STED, cản trở nó được sử dụng rộng rãi, là hệ thiết bị rất phức tạp. Tốc độ thu ảnh khá chậm khi quan sát mẫu lớn do phải quét mẫu. Tuy nhiên với mẫu nhỏ, tốc độ có thể lên tới 80 khung/giây.[34][35] STED cần dùng laser công suất cao, do đó mẫu có thể bị hư hại.

Phương pháp làm rỗng mức cơ bản (Ground state depletion - GSD)

Phương pháp làm rỗng mức cơ bản dùng các mức triplet của hạt phát quang để đưa hạt vào trạng thái tối. Hạt ở trạng thái bật khi ở mức single. Việc đưa hạt từ mức singlet sang mức triplet được thực hiện bằng cách kích thích quang. Điều này tương tự như phương pháp STED, nhưng, giá trị cường độ bão hòa nhỏ hơn. So với STED, các hạt phát quang được sử dụng trong GSD nói chung kém ổn định quang hơn.[36]

Hiển vi chiếu sáng bão hòa có cấu trúc (Saturated structured illumination microscopy - SSIM)

SSIM khai thác sự phụ thuộc phi tuyến của tốc độ phát quang của phân tử vào cường độ laser kích.[37] Cấu trúc chùm sáng được biến điệu dạng sin với cường độ đỉnh đủ để làm bão hòa hạt phát quang. Ảnh thu được là các vân Moiré. Các vân này mang các thông tin về không gian có thể thu được bằng kĩ thuật tin học từ đó có được ảnh siêu phân giải.

SSIM cần dịch cấu trúc chiếu nên bị hạn chế về tốc độ thu ảnh. Hơn nữa, phương pháp này cần phân tử bền quang do chiếu ánh sáng rất mạnh. Việc sử dụng ánh sáng mạnh có thể làm hư hại mẫu do đó cũng hạn chế khả năng ứng dụng của SSIM.

SIM giúp làm tăng độ phân giải lên 2 lần. Để tiếp tục cải thiện độ phân giải, người ta thêm vào yếu tố phi tuyến để làm xuất hiện các họa ba bậc cao khi thực hiện FT. Ví dụ,[21] Gustafsson sử dụng sự bão hòa của mẫu phát quang làm hiệu ứng phi tuyến.

Mỗi họa ba bậc cao cho phép một tập hợp ảnh khác có thể được sử dụng để tái dựng ảnh với độ phân giải cao hơn. Gustafsson đã thu được độ phân giải nhỏ hơn 50 nm.

Tài liệu tham khảo

WikiPedia: Hiển vi siêu phân giải http://blog.everydayscientist.com/?p=184 http://blog.everydayscientist.com/?p=354 http://apnews.excite.com/article/20141008/nobel-ch... http://www.falstad.com/diffraction/ http://www.nature.com/nmeth/journal/v5/n6/pdf/nmet... http://www.nytimes.com/2014/10/09/science/nobel-pr... http://www.olympusmicro.com/primer/techniques/near... http://link.springer.com/article/10.1140%2Fepjh%2F... http://www.tandfonline.com/doi/abs/10.1080/0010751... http://www.kip.uni-heidelberg.de/AG_Cremer/pdf-fil...